Regressor
BCNRegressor
BCN.BCNRegressor.BCNRegressor(
B=10,
nu=0.4,
col_sample=1,
lam=0.1,
r=0.9,
tol=0,
type_optim="nlminb",
activation="sigmoid",
hidden_layer_bias=True,
verbose=0,
show_progress=True,
seed=123,
)
BCN (Boosted Configuration Networks) regression model
Parameters:
B: int
Number of iterations of the algorithm.
nu: float
Learning rate.
col_sample: float
Percentage of columns (covariates) adjusted at each iteration of the algorithm.
lam: float
Defines lower and upper bounds neural networks weights.
r: float
With 0 < r < 1. Controls the convergence rate of residuals.
tol: float
Convergence tolerance for an early stopping
type_optim: string
Type of optimization procedure used for finding neural networks weights at each iteration ("nlminb", "nmkb", "hjkb", "bobyqa", "randomsearch")
activation: string
Activation function (must be bounded). Currently: "sigmoid", "tanh".
hidden_layer_bias: boolean
If there is a bias parameter in neural networks weights. If yes, True (default).
verbose: int
Controls verbosity (for checks). The higher, the more verbose.
show_progress: boolean
If True, a progress bar is displayed.
seed: int
For reproducibility of results.
fit
BCNRegressor.fit(X, y, **kwargs)
Fit BCN (Boosted Configuration Networks) regression model
Parameters:
X: {ndarray} of shape (n_samples, n_features)
Training data.
y: ndarray of shape (n_samples,)
Target values.
predict
BCNRegressor.predict(X, **kwargs)
Predict using BCN (Boosted Configuration Networks) regression model
Parameters:
X: array-like, shape (n_samples, n_features)
Test data.