LazyBoostingRegressor.Rd
Lazy Generic Boosting Regressor (AutoML Hold-out set validation)
LazyBoostingRegressor(
verbose = 0,
ignore_warnings = TRUE,
custom_metric = NULL,
predictions = FALSE,
sort_by = "RMSE",
random_state = 42,
estimators = "all",
preprocess = FALSE,
n_jobs = NULL
)
int, progress bar (yes = 1) or not (no = 0) (currently).
bool, ignore warnings.
function, custom metric.
bool, return predictions.
str, sort by metric.
int, random state.
str, estimators to use. List of names for custom, or just 'all'.
bool, preprocess data or not.
int, number of jobs.
LazyBoostingRegressor object
library(mlsauce)
library(datasets)
data(mtcars)
X <- as.matrix(mtcars[, -1])
y <- as.integer(mtcars[, 1])
n <- dim(X)[1]
p <- dim(X)[2]
set.seed(21341)
train_index <- sample(x = 1:n, size = floor(0.8*n), replace = TRUE)
test_index <- -train_index
X_train <- as.matrix(X[train_index, ])
y_train <- as.integer(y[train_index])
X_test <- as.matrix(X[test_index, ])
y_test <- as.integer(y[test_index])
obj <- LazyBoostingRegressor(verbose=0, ignore_warnings=TRUE,
custom_metric=NULL, preprocess=FALSE)
obj$fit(X_train, X_test, y_train, y_test)
#> [[1]]
#> Adjusted R-Squared R-Squared RMSE Time Taken
#> RandomForestRegressor -0.1609670 0.8065055 1.848996 0.26891112
#> GradientBoostingRegressor -0.2596835 0.7900528 1.926002 0.11517501
#> XGBRegressor -1.3776574 0.6037238 2.646065 0.09465313
#>
#> [[2]]
#> Adjusted R-Squared R-Squared RMSE Time Taken
#> RandomForestRegressor -0.1609670 0.8065055 1.848996 0.26891112
#> GradientBoostingRegressor -0.2596835 0.7900528 1.926002 0.11517501
#> XGBRegressor -1.3776574 0.6037238 2.646065 0.09465313
#>