library(bcn)
library(randomForest)
#> randomForest 4.7-1.1
#> Type rfNews() to see new features/changes/bug fixes.
library(pROC)
#> Type 'citation("pROC")' for a citation.
#>
#> Attaching package: 'pROC'
#> The following objects are masked from 'package:stats':
#>
#> cov, smooth, var
A few years ago in 2018, I discussed Boosted Configuration (neural) Networks (BCN, for multivariate time series forecasting) in this document. Unlike Stochastic Configuration Networks from which they are inspired, BCNs aren’t randomized. Rather, they are closer to Gradient Boosting Machines and Matching Pursuit algorithms; with base learners being single-layered feedforward neural networks – that are actually optimized at each iteration of the algorithm.
The mathematician that you are has certainly been asking himself
questions about the convexity of the problem at line 4, algorithm 1 (in
the
document). As of July 2022, there are unfortunately no answers to
that question. BCNs works well empirically, as we’ll
see, and finding the maximum at line 4 of the algorithm is achieved, by
default, with R’s stats::nlminb
. Other derivative-free
optimizers are available in R package
bcn
.
As it will be shown in this document, BCNs can be used for
classification. For this purpose, and as implemented in R package
bcn
, the response (variable to be explained) containing
the classes is one-hot encoded as a matrix of probabilities equal to 0
or 1. Then, the classification technique dealing with a one-hot encoded
response matrix is similar to the one presented in
this post.
3 toy datasets are used for this basic demo of R package
bcn
: Iris, Wine, Penguins. For each dataset, hyperparameter
tuning has already been done. Repeated 5-fold cross-validation was
carried out on 80% of the data, for each dataset, and the accuracy
reported in the table below is calculated on the remaining 20% of the
data. BCN results are compared to Random
Forest’s (with default parameters), in order to verify that BCN
results are not absurd – it’s not a competition between Random Forest
and BCN here.
The future for R package
bcn
(in no particular order)?
Dataset | BCN test set Accuracy | Random Forest test set accuracy |
---|---|---|
iris | 100% | 93.33% |
Wine | 97.22% | 94.44% |
Penguins | 100% | 100% |
Content
Installing bcn
From Github:
devtools::install_github("Techtonique/bcn")
# Browse the bcn manual pages
help(package = 'bcn')
Installing bcn
from R universe:
# Enable repository from techtonique
options(repos = c(
techtonique = 'https://techtonique.r-universe.dev',
CRAN = 'https://cloud.r-project.org'))
# Download and install bcn in R
install.packages('bcn')
# Browse the bcn manual pages
help(package = 'bcn')
Loading packages:
library(bcn)
library(randomForest)
library(pROC)
data("iris")
head(iris)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
dim(iris)
#> [1] 150 5
set.seed(1234)
train_idx <- sample(nrow(iris), 0.8 * nrow(iris))
X_train <- as.matrix(iris[train_idx, -ncol(iris)])
X_test <- as.matrix(iris[-train_idx, -ncol(iris)])
y_train <- iris$Species[train_idx]
y_test <- iris$Species[-train_idx]
ptm <- proc.time()
fit_obj <- bcn::bcn(x = X_train, y = y_train, B = 10L, nu = 0.335855,
lam = 10**0.7837525, r = 1 - 10**(-5.470031), tol = 10**-7,
activation = "tanh", type_optim = "nlminb", show_progress = FALSE)
cat("Elapsed: ", (proc.time() - ptm)[3])
#> Elapsed: 0.43
plot(fit_obj$errors_norm, type='l')
preds <- predict(fit_obj, newx = X_test)
mean(preds == y_test)
#> [1] 1
table(y_test, preds)
#> preds
#> y_test setosa versicolor virginica
#> setosa 13 0 0
#> versicolor 0 8 0
#> virginica 0 0 9
rf <- randomForest::randomForest(x = X_train, y = y_train)
mean(predict(rf, newdata=as.matrix(X_test)) == y_test)
#> [1] 0.9333333
print(head(predict(fit_obj, newx = X_test, type='probs')))
#> setosa versicolor virginica
#> [1,] 0.4024654 0.3174903 0.2800443
#> [2,] 0.4002180 0.3188798 0.2809022
#> [3,] 0.3993414 0.3209437 0.2797149
#> [4,] 0.4072561 0.3125790 0.2801649
#> [5,] 0.4023243 0.3167276 0.2809481
#> [6,] 0.4043465 0.3152716 0.2803818
print(head(predict(rf, newdata=as.matrix(X_test), type='prob')))
#> setosa versicolor virginica
#> 1 1.000 0.000 0
#> 7 1.000 0.000 0
#> 12 1.000 0.000 0
#> 15 0.946 0.054 0
#> 18 1.000 0.000 0
#> 23 1.000 0.000 0
data(wine)
head(wine)
#> alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids
#> 1 14.23 1.71 2.43 15.6 127 2.80 3.06
#> 2 13.20 1.78 2.14 11.2 100 2.65 2.76
#> 3 13.16 2.36 2.67 18.6 101 2.80 3.24
#> 4 14.37 1.95 2.50 16.8 113 3.85 3.49
#> 5 13.24 2.59 2.87 21.0 118 2.80 2.69
#> 6 14.20 1.76 2.45 15.2 112 3.27 3.39
#> nonflavanoid_phenols proanthocyanins color_intensity hue
#> 1 0.28 2.29 5.64 1.04
#> 2 0.26 1.28 4.38 1.05
#> 3 0.30 2.81 5.68 1.03
#> 4 0.24 2.18 7.80 0.86
#> 5 0.39 1.82 4.32 1.04
#> 6 0.34 1.97 6.75 1.05
#> od280.od315_of_diluted_wines proline target
#> 1 3.92 1065 1
#> 2 3.40 1050 1
#> 3 3.17 1185 1
#> 4 3.45 1480 1
#> 5 2.93 735 1
#> 6 2.85 1450 1
dim(wine)
#> [1] 178 14
set.seed(1234)
train_idx <- sample(nrow(wine), 0.8 * nrow(wine))
X_train <- as.matrix(wine[train_idx, -ncol(wine)])
X_test <- as.matrix(wine[-train_idx, -ncol(wine)])
y_train <- as.factor(wine$target[train_idx])
y_test <- as.factor(wine$target[-train_idx])
ptm <- proc.time()
fit_obj <- bcn::bcn(x = X_train, y = y_train, B = 6L, nu = 0.8715725,
lam = 10**0.2143678, r = 1 - 10**(-6.1072786),
tol = 10**-4.9605713, show_progress = FALSE)
cat("Elapsed: ", (proc.time() - ptm)[3])
#> Elapsed: 0.592
plot(fit_obj$errors_norm, type='l')
preds <- predict(fit_obj, newx = X_test)
mean(preds == y_test)
#> [1] 0.9722222
table(y_test, preds)
#> preds
#> y_test 1 2 3
#> 1 14 0 0
#> 2 0 15 1
#> 3 0 0 6
rf <- randomForest::randomForest(x = X_train, y = y_train)
mean(predict(rf, newdata=as.matrix(X_test)) == y_test)
#> [1] 0.9444444
print(head(predict(fit_obj, newx = X_test, type='probs')))
#> 1 2 3
#> [1,] 0.4243481 0.2896224 0.2860294
#> [2,] 0.4007695 0.2951041 0.3041265
#> [3,] 0.4229677 0.2896510 0.2873814
#> [4,] 0.4234005 0.2893842 0.2872153
#> [5,] 0.4200538 0.2880944 0.2918518
#> [6,] 0.4185796 0.2888308 0.2925896
print(head(predict(rf, newdata=as.matrix(X_test), type='prob')))
#> 1 2 3
#> 1 0.998 0.002 0.000
#> 5 0.524 0.400 0.076
#> 12 0.768 0.202 0.030
#> 13 0.918 0.070 0.012
#> 18 0.928 0.058 0.014
#> 31 0.902 0.092 0.006
data("penguins")
penguins_ <- as.data.frame(penguins)
replacement <- median(penguins$bill_length_mm, na.rm = TRUE)
penguins_$bill_length_mm[is.na(penguins$bill_length_mm)] <- replacement
replacement <- median(penguins$bill_depth_mm, na.rm = TRUE)
penguins_$bill_depth_mm[is.na(penguins$bill_depth_mm)] <- replacement
replacement <- median(penguins$flipper_length_mm, na.rm = TRUE)
penguins_$flipper_length_mm[is.na(penguins$flipper_length_mm)] <- replacement
replacement <- median(penguins$body_mass_g, na.rm = TRUE)
penguins_$body_mass_g[is.na(penguins$body_mass_g)] <- replacement
# replacing NA's by the most frequent occurence
penguins_$sex[is.na(penguins$sex)] <- "male" # most frequent
print(summary(penguins_))
#> species island bill_length_mm bill_depth_mm
#> Adelie :152 Biscoe :168 Min. :32.10 Min. :13.10
#> Chinstrap: 68 Dream :124 1st Qu.:39.27 1st Qu.:15.60
#> Gentoo :124 Torgersen: 52 Median :44.45 Median :17.30
#> Mean :43.92 Mean :17.15
#> 3rd Qu.:48.50 3rd Qu.:18.70
#> Max. :59.60 Max. :21.50
#> flipper_length_mm body_mass_g sex year
#> Min. :172.0 Min. :2700 female:165 Min. :2007
#> 1st Qu.:190.0 1st Qu.:3550 male :179 1st Qu.:2007
#> Median :197.0 Median :4050 Median :2008
#> Mean :200.9 Mean :4201 Mean :2008
#> 3rd Qu.:213.0 3rd Qu.:4750 3rd Qu.:2009
#> Max. :231.0 Max. :6300 Max. :2009
print(sum(is.na(penguins_)))
#> [1] 0
# one-hot encoding for covariates
penguins_mat <- model.matrix(species ~., data=penguins_)[,-1]
penguins_mat <- cbind(penguins_$species, penguins_mat)
penguins_mat <- as.data.frame(penguins_mat)
colnames(penguins_mat)[1] <- "species"
print(head(penguins_mat))
#> species islandDream islandTorgersen bill_length_mm bill_depth_mm
#> 1 1 0 1 39.10 18.7
#> 2 1 0 1 39.50 17.4
#> 3 1 0 1 40.30 18.0
#> 4 1 0 1 44.45 17.3
#> 5 1 0 1 36.70 19.3
#> 6 1 0 1 39.30 20.6
#> flipper_length_mm body_mass_g sexmale year
#> 1 181 3750 1 2007
#> 2 186 3800 0 2007
#> 3 195 3250 0 2007
#> 4 197 4050 1 2007
#> 5 193 3450 0 2007
#> 6 190 3650 1 2007
print(tail(penguins_mat))
#> species islandDream islandTorgersen bill_length_mm bill_depth_mm
#> 339 2 1 0 45.7 17.0
#> 340 2 1 0 55.8 19.8
#> 341 2 1 0 43.5 18.1
#> 342 2 1 0 49.6 18.2
#> 343 2 1 0 50.8 19.0
#> 344 2 1 0 50.2 18.7
#> flipper_length_mm body_mass_g sexmale year
#> 339 195 3650 0 2009
#> 340 207 4000 1 2009
#> 341 202 3400 0 2009
#> 342 193 3775 1 2009
#> 343 210 4100 1 2009
#> 344 198 3775 0 2009
y <- as.integer(penguins_mat$species)
X <- as.matrix(penguins_mat[,2:ncol(penguins_mat)])
n <- nrow(X)
p <- ncol(X)
set.seed(1234)
index_train <- sample(1:n, size=floor(0.8*n))
X_train <- X[index_train, ]
y_train <- factor(y[index_train])
X_test <- X[-index_train, ]
y_test <- factor(y[-index_train])
ptm <- proc.time()
fit_obj <- bcn::bcn(x = X_train, y = y_train, B = 23, nu = 0.470043,
lam = 10**-0.05766029, r = 1 - 10**(-7.905866), tol = 10**-7,
show_progress = FALSE)
cat("Elapsed: ", (proc.time() - ptm)[3])
#> Elapsed: 0.522
plot(fit_obj$errors_norm, type='l')
preds <- predict(fit_obj, newx = X_test)
mean(preds == y_test)
#> [1] 1
table(y_test, preds)
#> preds
#> y_test 1 2 3
#> 1 24 0 0
#> 2 0 13 0
#> 3 0 0 32
rf <- randomForest::randomForest(x = X_train, y = y_train)
mean(predict(rf, newdata=as.matrix(X_test)) == y_test)
#> [1] 1
print(head(predict(fit_obj, newx = X_test, type='probs')))
#> 1 2 3
#> [1,] 0.4354771 0.2811665 0.2833565
#> [2,] 0.3977326 0.3181369 0.2841305
#> [3,] 0.4327560 0.2715548 0.2956892
#> [4,] 0.4290288 0.2839554 0.2870158
#> [5,] 0.4298022 0.2811012 0.2890967
#> [6,] 0.4202598 0.2917779 0.2879623
print(head(predict(rf, newdata=as.matrix(X_test), type='prob')))
#> 1 2 3
#> 1 0.998 0.000 0.002
#> 3 0.992 0.008 0.000
#> 8 0.966 0.000 0.034
#> 11 0.990 0.004 0.006
#> 16 1.000 0.000 0.000
#> 18 0.946 0.018 0.036