## Loading required package: Matrix
## Loaded glmnet 4.1-7
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

Examples for regression, time series, and classification.

Regression

Create a dataset

# dataset
 set.seed(123)
 n <- 100 ; p <- 5
 X <- matrix(rnorm(n * p), n, p)
 y <- rnorm(n)

Cross-validation for a few models

Linear model

# 'X' contains the explanatory variables
# 'y' is the response
# 'k' is the number of folds in k-fold cross-validation
# 'repeats' is the number of repeats of the k-fold cross-validation procedure

# linear model example -----

crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 3, show_progress = FALSE)
## $folds
##         repeat_1  repeat_2  repeat_3
## fold_1 1.0657917 0.7188426 1.0338031
## fold_2 1.0253419 0.6820600 0.7632532
## fold_3 0.8726629 1.0294080 0.7830872
## fold_4 0.8899336 1.2441376 0.9776853
## fold_5 0.9724975 1.0578021 1.0921075
## 
## $mean
## [1] 0.9472276
## 
## $sd
## [1] 0.15799
## 
## $median
## [1] 0.9776853
## 
## $summary
##     repeat_1         repeat_2         repeat_3     
##  Min.   :0.8727   Min.   :0.6821   Min.   :0.7633  
##  1st Qu.:0.8899   1st Qu.:0.7188   1st Qu.:0.7831  
##  Median :0.9725   Median :1.0294   Median :0.9777  
##  Mean   :0.9652   Mean   :0.9465   Mean   :0.9300  
##  3rd Qu.:1.0253   3rd Qu.:1.0578   3rd Qu.:1.0338  
##  Max.   :1.0658   Max.   :1.2441   Max.   :1.0921
# linear model example, with validation set

crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 3, p = 0.8, show_progress = FALSE)
## $folds
##                    repeat_1  repeat_2  repeat_3
## fold_training_1   0.8589887 0.6618209 0.8028635
## fold_validation_1 1.0689051 1.1206828 1.1719136
## fold_training_2   0.7093379 1.0424256 0.9199860
## fold_validation_2 1.0827333 1.1363834 1.0731990
## fold_training_3   1.0489754 1.1053316 1.1602932
## fold_validation_3 1.2271907 1.1456095 1.0881138
## fold_training_4   0.9703262 0.9576335 0.8823505
## fold_validation_4 1.1098708 1.0933379 1.0563444
## fold_training_5   1.0689683 0.9692094 1.1509957
## fold_validation_5 1.0925497 1.0641650 1.1304265
## 
## $mean_training
## [1] 0.9539671
## 
## $mean_validation
## [1] 1.110762
## 
## $sd_training
## [1] 0.1507651
## 
## $sd_validation
## [1] 0.04619929
## 
## $median_training
## [1] 0.9692094
## 
## $median_validation
## [1] 1.093338
## 
## $summary_training
##     repeat_1         repeat_2         repeat_3     
##  Min.   :0.7093   Min.   :0.6618   Min.   :0.8029  
##  1st Qu.:0.8590   1st Qu.:0.9576   1st Qu.:0.8824  
##  Median :0.9703   Median :0.9692   Median :0.9200  
##  Mean   :0.9313   Mean   :0.9473   Mean   :0.9833  
##  3rd Qu.:1.0490   3rd Qu.:1.0424   3rd Qu.:1.1510  
##  Max.   :1.0690   Max.   :1.1053   Max.   :1.1603  
## 
## $summary_validation
##     repeat_1        repeat_2        repeat_3    
##  Min.   :1.069   Min.   :1.064   Min.   :1.056  
##  1st Qu.:1.083   1st Qu.:1.093   1st Qu.:1.073  
##  Median :1.093   Median :1.121   Median :1.088  
##  Mean   :1.116   Mean   :1.112   Mean   :1.104  
##  3rd Qu.:1.110   3rd Qu.:1.136   3rd Qu.:1.130  
##  Max.   :1.227   Max.   :1.146   Max.   :1.172

glmnet

# glmnet example -----

# fit glmnet, with alpha = 1, lambda = 0.1

 crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 3, show_progress = FALSE,
 fit_func = glmnet::glmnet, predict_func = predict.glmnet,
 packages = c("glmnet", "Matrix"), fit_params = list(alpha = 0.5, lambda = 0.1))
## $folds
##         repeat_1  repeat_2  repeat_3
## fold_1 1.0514770 0.7505046 1.0142623
## fold_2 1.0195407 0.6996108 0.7214830
## fold_3 0.8858994 1.0033483 0.7838630
## fold_4 0.8101031 1.2110573 0.9747158
## fold_5 0.9562564 1.0257926 1.0952526
## 
## $mean
## [1] 0.9335445
## 
## $sd
## [1] 0.1511116
## 
## $median
## [1] 0.9747158
## 
## $summary
##     repeat_1         repeat_2         repeat_3     
##  Min.   :0.8101   Min.   :0.6996   Min.   :0.7215  
##  1st Qu.:0.8859   1st Qu.:0.7505   1st Qu.:0.7839  
##  Median :0.9563   Median :1.0033   Median :0.9747  
##  Mean   :0.9447   Mean   :0.9381   Mean   :0.9179  
##  3rd Qu.:1.0195   3rd Qu.:1.0258   3rd Qu.:1.0143  
##  Max.   :1.0515   Max.   :1.2111   Max.   :1.0953
# fit glmnet, with alpha = 0, lambda = 0.01

 crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 3, show_progress = FALSE,
 fit_func = glmnet::glmnet, predict_func = predict.glmnet,
 packages = c("glmnet", "Matrix"), fit_params = list(alpha = 0, lambda = 0.01))
## $folds
##         repeat_1  repeat_2  repeat_3
## fold_1 1.0605785 0.7192835 1.0253503
## fold_2 1.0266807 0.6757645 0.7594241
## fold_3 0.8895544 1.0344944 0.7733901
## fold_4 0.8938092 1.2470820 1.0042933
## fold_5 0.9641163 1.0703400 1.0952784
## 
## $mean
## [1] 0.949296
## 
## $sd
## [1] 0.160505
## 
## $median
## [1] 1.004293
## 
## $summary
##     repeat_1         repeat_2         repeat_3     
##  Min.   :0.8896   Min.   :0.6758   Min.   :0.7594  
##  1st Qu.:0.8938   1st Qu.:0.7193   1st Qu.:0.7734  
##  Median :0.9641   Median :1.0345   Median :1.0043  
##  Mean   :0.9669   Mean   :0.9494   Mean   :0.9315  
##  3rd Qu.:1.0267   3rd Qu.:1.0703   3rd Qu.:1.0254  
##  Max.   :1.0606   Max.   :1.2471   Max.   :1.0953
 # fit glmnet, with alpha = 0, lambda = 0.01, with validation set

 crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 2, p = 0.8, 
                              show_progress = FALSE,
 fit_func = glmnet::glmnet, predict_func = predict.glmnet,
 packages = c("glmnet", "Matrix"), fit_params = list(alpha = 0, lambda = 0.01))
## $folds
##                    repeat_1  repeat_2
## fold_training_1   0.8581977 0.6617929
## fold_validation_1 1.0648167 1.1204975
## fold_training_2   0.7000929 1.0383779
## fold_validation_2 1.0683314 1.1451865
## fold_training_3   1.0515575 1.1083551
## fold_validation_3 1.1922896 1.1370166
## fold_training_4   0.9847907 0.9510162
## fold_validation_4 1.0888078 1.0477593
## fold_training_5   1.0600201 0.9665769
## fold_validation_5 1.0568172 1.0571621
## 
## $mean_training
## [1] 0.9380778
## 
## $mean_validation
## [1] 1.097868
## 
## $sd_training
## [1] 0.1525031
## 
## $sd_validation
## [1] 0.04841842
## 
## $median_training
## [1] 0.9756838
## 
## $median_validation
## [1] 1.07857
## 
## $summary_training
##     repeat_1         repeat_2     
##  Min.   :0.7001   Min.   :0.6618  
##  1st Qu.:0.8582   1st Qu.:0.9510  
##  Median :0.9848   Median :0.9666  
##  Mean   :0.9309   Mean   :0.9452  
##  3rd Qu.:1.0516   3rd Qu.:1.0384  
##  Max.   :1.0600   Max.   :1.1084  
## 
## $summary_validation
##     repeat_1        repeat_2    
##  Min.   :1.057   Min.   :1.048  
##  1st Qu.:1.065   1st Qu.:1.057  
##  Median :1.068   Median :1.120  
##  Mean   :1.094   Mean   :1.102  
##  3rd Qu.:1.089   3rd Qu.:1.137  
##  Max.   :1.192   Max.   :1.145

Random Forest

# randomForest example -----

# fit randomForest with mtry = 2

crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 3, 
                             show_progress = FALSE,
fit_func = randomForest::randomForest, predict_func = predict,
packages = "randomForest", fit_params = list(mtry = 2))
## $folds
##         repeat_1  repeat_2  repeat_3
## fold_1 1.0932266 0.8306226 1.0178042
## fold_2 1.0016687 0.8546975 0.8257244
## fold_3 0.8960080 1.1016916 0.7720573
## fold_4 0.7837822 1.2375085 1.0627761
## fold_5 0.9827901 1.0636167 1.1402827
## 
## $mean
## [1] 0.9776172
## 
## $sd
## [1] 0.1429053
## 
## $median
## [1] 1.001669
## 
## $summary
##     repeat_1         repeat_2         repeat_3     
##  Min.   :0.7838   Min.   :0.8306   Min.   :0.7721  
##  1st Qu.:0.8960   1st Qu.:0.8547   1st Qu.:0.8257  
##  Median :0.9828   Median :1.0636   Median :1.0178  
##  Mean   :0.9515   Mean   :1.0176   Mean   :0.9637  
##  3rd Qu.:1.0017   3rd Qu.:1.1017   3rd Qu.:1.0628  
##  Max.   :1.0932   Max.   :1.2375   Max.   :1.1403
# fit randomForest with mtry = 4

crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 3, 
                             show_progress = FALSE,
fit_func = randomForest::randomForest, predict_func = predict,
packages = "randomForest", fit_params = list(mtry = 4))
## $folds
##         repeat_1  repeat_2  repeat_3
## fold_1 1.0938938 0.8294432 1.0274141
## fold_2 0.9948985 0.8837450 0.8508324
## fold_3 0.8830305 1.1455328 0.7690735
## fold_4 0.8326955 1.2709843 1.0781753
## fold_5 0.9802129 1.0722765 1.1277285
## 
## $mean
## [1] 0.9893291
## 
## $sd
## [1] 0.1440225
## 
## $median
## [1] 0.9948985
## 
## $summary
##     repeat_1         repeat_2         repeat_3     
##  Min.   :0.8327   Min.   :0.8294   Min.   :0.7691  
##  1st Qu.:0.8830   1st Qu.:0.8837   1st Qu.:0.8508  
##  Median :0.9802   Median :1.0723   Median :1.0274  
##  Mean   :0.9569   Mean   :1.0404   Mean   :0.9706  
##  3rd Qu.:0.9949   3rd Qu.:1.1455   3rd Qu.:1.0782  
##  Max.   :1.0939   Max.   :1.2710   Max.   :1.1277
# fit randomForest with mtry = 4, with validation set

crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 2, p = 0.8, 
                             show_progress = FALSE,
fit_func = randomForest::randomForest, predict_func = predict,
packages = "randomForest", fit_params = list(mtry = 4))
## $folds
##                    repeat_1  repeat_2
## fold_training_1   0.8159825 0.7779928
## fold_validation_1 0.6071914 0.7095150
## fold_training_2   0.8055798 0.9620625
## fold_validation_2 0.6124228 0.6857506
## fold_training_3   1.0334201 1.1550091
## fold_validation_3 0.9720091 0.9593153
## fold_training_4   0.9259389 1.0479121
## fold_validation_4 0.6447842 0.6833361
## fold_training_5   0.9795790 0.9959987
## fold_validation_5 0.8065167 0.6781677
## 
## $mean_training
## [1] 0.9499476
## 
## $mean_validation
## [1] 0.7359009
## 
## $sd_training
## [1] 0.1205054
## 
## $sd_validation
## [1] 0.1333626
## 
## $median_training
## [1] 0.9708207
## 
## $median_validation
## [1] 0.6845434
## 
## $summary_training
##     repeat_1         repeat_2     
##  Min.   :0.8056   Min.   :0.7780  
##  1st Qu.:0.8160   1st Qu.:0.9621  
##  Median :0.9259   Median :0.9960  
##  Mean   :0.9121   Mean   :0.9878  
##  3rd Qu.:0.9796   3rd Qu.:1.0479  
##  Max.   :1.0334   Max.   :1.1550  
## 
## $summary_validation
##     repeat_1         repeat_2     
##  Min.   :0.6072   Min.   :0.6782  
##  1st Qu.:0.6124   1st Qu.:0.6833  
##  Median :0.6448   Median :0.6858  
##  Mean   :0.7286   Mean   :0.7432  
##  3rd Qu.:0.8065   3rd Qu.:0.7095  
##  Max.   :0.9720   Max.   :0.9593

xgboost

# xgboost example -----

# The response and covariates are named 'label' and 'data'
# So, we do this:

f_xgboost <- function(x, y, ...) xgboost::xgboost(data = x, label = y, ...)

# fit xgboost with nrounds = 5

crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 3, 
                             show_progress = FALSE,
  fit_func = f_xgboost, predict_func = predict,
   packages = "xgboost", fit_params = list(nrounds = 5,
   verbose = FALSE))
## $folds
##         repeat_1  repeat_2  repeat_3
## fold_1 1.0618781 0.7934194 1.1900606
## fold_2 0.9843552 0.8976441 0.7811620
## fold_3 1.0453996 1.2422247 0.7457622
## fold_4 0.7264478 1.3522984 0.9835989
## fold_5 1.0235773 1.0813265 1.1978533
## 
## $mean
## [1] 1.007134
## 
## $sd
## [1] 0.1911201
## 
## $median
## [1] 1.023577
## 
## $summary
##     repeat_1         repeat_2         repeat_3     
##  Min.   :0.7264   Min.   :0.7934   Min.   :0.7458  
##  1st Qu.:0.9844   1st Qu.:0.8976   1st Qu.:0.7812  
##  Median :1.0236   Median :1.0813   Median :0.9836  
##  Mean   :0.9683   Mean   :1.0734   Mean   :0.9797  
##  3rd Qu.:1.0454   3rd Qu.:1.2422   3rd Qu.:1.1901  
##  Max.   :1.0619   Max.   :1.3523   Max.   :1.1979
# fit xgboost with nrounds = 10

crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 3, 
                             show_progress = FALSE,
  fit_func = f_xgboost, predict_func = predict,
   packages = "xgboost", fit_params = list(nrounds = 10,
   verbose = FALSE))
## $folds
##         repeat_1  repeat_2  repeat_3
## fold_1 1.0658784 0.7836507 1.2662420
## fold_2 0.9968874 0.9484756 0.7958286
## fold_3 1.0444959 1.2541543 0.7130956
## fold_4 0.8412503 1.3478651 1.1406648
## fold_5 1.0178454 1.1320386 1.2381301
## 
## $mean
## [1] 1.0391
## 
## $sd
## [1] 0.1950815
## 
## $median
## [1] 1.044496
## 
## $summary
##     repeat_1         repeat_2         repeat_3     
##  Min.   :0.8413   Min.   :0.7837   Min.   :0.7131  
##  1st Qu.:0.9969   1st Qu.:0.9485   1st Qu.:0.7958  
##  Median :1.0178   Median :1.1320   Median :1.1407  
##  Mean   :0.9933   Mean   :1.0932   Mean   :1.0308  
##  3rd Qu.:1.0445   3rd Qu.:1.2542   3rd Qu.:1.2381  
##  Max.   :1.0659   Max.   :1.3479   Max.   :1.2662
# fit xgboost with nrounds = 10, with validation set

crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 2, p = 0.8, 
                             show_progress = FALSE,
  fit_func = f_xgboost, predict_func = predict,
   packages = "xgboost", fit_params = list(nrounds = 10,
   verbose = FALSE))
## $folds
##                    repeat_1  repeat_2
## fold_training_1   0.7448843 0.8539725
## fold_validation_1 0.3889456 0.7549903
## fold_training_2   0.7627843 1.1084452
## fold_validation_2 0.5865502 0.6016042
## fold_training_3   1.1758940 1.1011674
## fold_validation_3 1.0291986 0.8007670
## fold_training_4   1.0463162 1.1637320
## fold_validation_4 0.8800788 0.5981181
## fold_training_5   0.9523677 1.0585674
## fold_validation_5 0.6689611 0.6313575
## 
## $mean_training
## [1] 0.9968131
## 
## $mean_validation
## [1] 0.6940571
## 
## $sd_training
## [1] 0.1599181
## 
## $sd_validation
## [1] 0.1791918
## 
## $median_training
## [1] 1.052442
## 
## $median_validation
## [1] 0.6501593
## 
## $summary_training
##     repeat_1         repeat_2    
##  Min.   :0.7449   Min.   :0.854  
##  1st Qu.:0.7628   1st Qu.:1.059  
##  Median :0.9524   Median :1.101  
##  Mean   :0.9364   Mean   :1.057  
##  3rd Qu.:1.0463   3rd Qu.:1.108  
##  Max.   :1.1759   Max.   :1.164  
## 
## $summary_validation
##     repeat_1         repeat_2     
##  Min.   :0.3889   Min.   :0.5981  
##  1st Qu.:0.5866   1st Qu.:0.6016  
##  Median :0.6690   Median :0.6314  
##  Mean   :0.7107   Mean   :0.6774  
##  3rd Qu.:0.8801   3rd Qu.:0.7550  
##  Max.   :1.0292   Max.   :0.8008

Time series

Theta method (time series)

res <- crossvalidation::crossval_ts(y=AirPassengers, initial_window = 10, fcast_func = thetaf, show_progress = FALSE)
print(colMeans(res))
##           ME         RMSE          MAE          MPE         MAPE 
##  2.657082195 51.427170382 46.511874693  0.003423843  0.155428590

Classification

# Input data 

# Transforming model response into a factor
y <- as.factor(as.numeric(iris$Species))
# Explanatory variables 
X <- as.matrix(iris[, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")])
# 5-fold cross-validation repeated 3 times
# default error metric, when y is a factor: accuracy
crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 3,
                             fit_func = randomForest::randomForest, 
                             predict_func = predict,
                             fit_params = list(mtry = 2),
                             packages = "randomForest", 
                             show_progress = FALSE)
## $folds
##         repeat_1  repeat_2  repeat_3
## fold_1 0.9666667 0.9666667 1.0000000
## fold_2 0.9666667 0.9000000 0.9333333
## fold_3 1.0000000 0.9666667 0.9333333
## fold_4 0.9333333 1.0000000 0.9333333
## fold_5 0.9333333 0.9333333 0.9666667
## 
## $mean
## [1] 0.9555556
## 
## $sd
## [1] 0.02999118
## 
## $median
## [1] 0.9666667
## 
## $summary
##     repeat_1         repeat_2         repeat_3     
##  Min.   :0.9333   Min.   :0.9000   Min.   :0.9333  
##  1st Qu.:0.9333   1st Qu.:0.9333   1st Qu.:0.9333  
##  Median :0.9667   Median :0.9667   Median :0.9333  
##  Mean   :0.9600   Mean   :0.9533   Mean   :0.9533  
##  3rd Qu.:0.9667   3rd Qu.:0.9667   3rd Qu.:0.9667  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000
# We can specify custom error metrics for crossvalidation::crossval_ml
# here, the error rate 
eval_metric <- function (preds, actual)
{
 stopifnot(length(preds) == length(actual))
  res <- 1-mean(preds == actual)
  names(res) <- "error rate"
  return(res)
}

# specify `eval_metric` argument for measuring the error rate
# instead of the (default) accuracy 
crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 3,
                             fit_func = randomForest::randomForest, 
                             predict_func = predict,
                             fit_params = list(mtry = 2),
                             packages = "randomForest", 
                             eval_metric=eval_metric, 
                             show_progress = FALSE)
## $folds
##          repeat_1   repeat_2   repeat_3
## fold_1 0.03333333 0.03333333 0.00000000
## fold_2 0.03333333 0.10000000 0.06666667
## fold_3 0.00000000 0.03333333 0.06666667
## fold_4 0.06666667 0.00000000 0.06666667
## fold_5 0.06666667 0.06666667 0.03333333
## 
## $mean
## [1] 0.04444444
## 
## $sd
## [1] 0.02999118
## 
## $median
## [1] 0.03333333
## 
## $summary
##     repeat_1          repeat_2          repeat_3      
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.03333   1st Qu.:0.03333   1st Qu.:0.03333  
##  Median :0.03333   Median :0.03333   Median :0.06667  
##  Mean   :0.04000   Mean   :0.04667   Mean   :0.04667  
##  3rd Qu.:0.06667   3rd Qu.:0.06667   3rd Qu.:0.06667  
##  Max.   :0.06667   Max.   :0.10000   Max.   :0.06667