Random Vector functional link network model with 2 regularization parameters

ridge2f(
  y,
  h = 5,
  level = 95,
  xreg = NULL,
  lags = 1,
  nb_hidden = 5,
  nodes_sim = c("sobol", "halton", "unif"),
  activ = c("relu", "sigmoid", "tanh", "leakyrelu", "elu", "linear"),
  a = 0.01,
  lambda_1 = 0.1,
  lambda_2 = 0.1,
  dropout = 0,
  type_forecast = c("recursive", "direct"),
  type_pi = c("gaussian", "bootstrap", "blockbootstrap", "movingblockbootstrap",
    "rvinecopula"),
  block_length = NULL,
  margins = c("gaussian", "empirical"),
  seed = 1,
  B = 100L,
  type_aggregation = c("mean", "median"),
  centers = NULL,
  type_clustering = c("kmeans", "hclust"),
  ym = NULL,
  cl = 1L,
  show_progress = TRUE,
  ...
)

Arguments

y

A univariate of multivariate time series of class ts (preferred) or a matrix

h

Forecasting horizon

level

Confidence level for prediction intervals

xreg

External regressors. A data.frame (preferred) or a matrix

lags

Number of lags

nb_hidden

Number of nodes in hidden layer

nodes_sim

Type of simulation for nodes in the hidden layer

activ

Activation function

a

Hyperparameter for activation function "leakyrelu", "elu"

lambda_1

Regularization parameter for original predictors

lambda_2

Regularization parameter for transformed predictors

dropout

dropout regularization parameter (dropping nodes in hidden layer)

type_forecast

Recursive or direct forecast

type_pi

Type of prediction interval currently "gaussian", "bootstrap", "blockbootstrap", "movingblockbootstrap", "rvinecopula" (with Gaussian and empirical margins for now)

block_length

Length of block for circular or moving block bootstrap

margins

Distribution of margins: "gaussian", "empirical" for type_pi == "rvinecopula"

seed

Reproducibility seed for random stuff

B

Number of bootstrap replications or number of simulations (yes, 'B' is unfortunate)

type_aggregation

Type of aggregation, ONLY for bootstrapping; either "mean" or "median"

centers

Number of clusters for type_clustering

type_clustering

"kmeans" (K-Means clustering) or "hclust" (Hierarchical clustering)

ym

Univariate time series (stats::ts) of yield to maturities with frequency = frequency(y) and start = tsp(y)[2] + 1 / frequency(y). Default is NULL.

cl

An integer; the number of clusters for parallel execution, for bootstrap

show_progress

A boolean; show progress bar for bootstrapping? Default is TRUE.

...

Additional parameters to be passed to kmeans or hclust

Value

An object of class "mtsforecast"; a list containing the following elements:

method

The name of the forecasting method as a character string

mean

Point forecasts for the time series

lower

Lower bound for prediction interval

upper

Upper bound for prediction interval

sims

Model simulations for bootstrapping (basic, or block)

x

The original time series

residuals

Residuals from the fitted model

coefficients

Regression coefficients for type_pi == 'gaussian' for now

References

Moudiki, T., Planchet, F., & Cousin, A. (2018). Multiple time series forecasting using quasi-randomized functional link neural networks. Risks, 6(1), 22.

Author

T. Moudiki

Examples


require(fpp)

print(ahead::ridge2f(fpp::insurance)$mean)
#>            Quotes TV.advert
#> May 2005 14.76393  8.947782
#> Jun 2005 14.61841  8.862613
#> Jul 2005 14.56234  8.841193
#> Aug 2005 14.49305  8.809091
#> Sep 2005 14.43100  8.781208
print(ahead::ridge2f(fpp::usconsumption)$lower)
#>         consumption     income
#> 2011 Q1  -0.5227315 -0.7844227
#> 2011 Q2  -0.5076823 -0.9604548
#> 2011 Q3  -0.5062880 -0.8898860
#> 2011 Q4  -0.5036865 -0.9128285
#> 2012 Q1  -0.5032325 -0.9031703

res <- ahead::ridge2f(fpp::insurance, h=10, lags=2)
par(mfrow=c(1, 2))
plot(res, "Quotes")
plot(res, "TV.advert")


# include a trend (just for the example)
xreg <- as.numeric(time(fpp::insurance))
res2 <- ahead::ridge2f(fpp::insurance, xreg=xreg,
h=10, lags=2)
par(mfrow=c(1, 2))
plot(res2, "Quotes")
plot(res2, "TV.advert")


# block bootstrap
xreg <- as.numeric(time(fpp::insurance))
res3 <- ahead::ridge2f(fpp::insurance, xreg=xreg,
                      h=10, lags=1L, type_pi = "bootstrap", B=10)
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |======================================================================| 100%
res5 <- ahead::ridge2f(fpp::insurance, xreg=xreg,
                      h=10, lags=1L, type_pi = "blockbootstrap", B=10,
                      block_length = 4)
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |======================================================================| 100%

print(res3$sims[[2]])
#>            Quotes TV.advert
#> May 2005 15.72942  9.514972
#> Jun 2005 14.09346  8.458399
#> Jul 2005 18.25350 10.789118
#> Aug 2005 17.97007 11.672310
#> Sep 2005 13.23870  8.172901
#> Oct 2005 15.38918 10.437795
#> Nov 2005 14.13069  9.070793
#> Dec 2005 10.83028  6.903871
#> Jan 2006 14.01583  8.671829
#> Feb 2006 17.93777 10.714967
print(res5$sims[[2]])
#>            Quotes TV.advert
#> May 2005 15.97876 10.768360
#> Jun 2005 11.34974  7.525175
#> Jul 2005 10.98139  7.100955
#> Aug 2005 15.44516  9.621484
#> Sep 2005 16.08253  9.682221
#> Oct 2005 17.08198  9.809834
#> Nov 2005 18.47991 10.744276
#> Dec 2005 18.84287 10.886582
#> Jan 2006 18.50397 11.439328
#> Feb 2006 18.55954 11.717947

par(mfrow=c(2, 2))
plot(res3, "Quotes")
plot(res3, "TV.advert")
plot(res5, "Quotes")
plot(res5, "TV.advert")



res4 <- ahead::ridge2f(fpp::usconsumption, h=20, lags=2L,
lambda_2=1)
par(mfrow=c(1, 2))
plot(res4, "income")
plot(res4, "consumption")



# moving block bootstrap
xreg <- as.numeric(time(fpp::insurance))
res6 <- ahead::ridge2f(fpp::insurance, xreg=xreg,
                      h=10, lags=1L,
                      type_pi = "movingblockbootstrap", B=10,
                      block_length = 4)
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |======================================================================| 100%

print(res6$sims[[2]])
#>            Quotes TV.advert
#> May 2005 15.72942  9.514972
#> Jun 2005 15.17064  9.280168
#> Jul 2005 13.04263  8.213002
#> Aug 2005 13.96530  8.942326
#> Sep 2005 12.28570  7.599110
#> Oct 2005 11.34549  6.871662
#> Nov 2005 14.12918  8.156717
#> Dec 2005 18.13043 10.335690
#> Jan 2006 19.56811 12.456360
#> Feb 2006 14.59436  8.906951

par(mfrow=c(1, 2))
plot(res6, "Quotes")
plot(res6, "TV.advert")