1 - Comb OLS
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
custom_error <- function(actual, forecast_) {
return(mean(abs(forecast_ - actual)))
}
h <- 29L
train_AirPassengers <- ts(AirPassengers[1:115], start = start(AirPassengers), frequency = frequency(AirPassengers))
arima_forecast <- forecast::forecast(forecast::auto.arima(train_AirPassengers), h=h)
ets_forecast <- forecast::forecast(forecast::ets(train_AirPassengers), h=h)
theta_forecast <- forecast::thetaf(train_AirPassengers, h=h)
ridge_forecast <- ahead::dynrmf(train_AirPassengers, h=h)
## Registered S3 methods overwritten by 'ahead':
## method from
## plot.foreccomb_res ForecastComb
## predict.foreccomb_res ForecastComb
## print.foreccomb_res_summary ForecastComb
## summary.foreccomb_res ForecastComb
glmnet_forecast <- ahead::dynrmf(train_AirPassengers, h=h,
fit_func = glmnet::cv.glmnet, predict_func = predict)
print(forecast::accuracy(arima_forecast, AirPassengers[116:144]))
## ME RMSE MAE MPE MAPE MASE
## Training set 0.2145268 9.067565 6.898655 0.03414791 2.899017 0.3275496
## Test set 22.9591869 35.082793 28.547389 4.53360086 6.124545 1.3554362
## ACF1
## Training set 0.01529513
## Test set NA
## ME RMSE MAE MPE MAPE MASE
## Training set 1.375376 8.141851 6.348423 0.4340769 2.755794 0.3014245
## Test set 15.907062 35.807216 29.976427 2.6967550 6.533672 1.4232873
## ACF1
## Training set 0.1456818
## Test set NA
print(forecast::accuracy(theta_forecast, AirPassengers[116:144]))
## ME RMSE MAE MPE MAPE MASE
## Training set 2.509724 8.244161 6.381718 0.9709265 2.794444 0.3030054
## Test set 18.499435 38.339636 32.160094 3.2578724 6.995654 1.5269682
## ACF1
## Training set -0.06759516
## Test set NA
print(forecast::accuracy(ridge_forecast, AirPassengers[116:144]))
## ME RMSE MAE MPE MAPE MASE
## Training set 1.517011e-15 13.03215 10.56922 -0.05818072 5.014722 0.5447499
## Test set -1.868676e+01 41.59669 32.81392 -5.01410649 7.788813 1.5580118
## ACF1
## Training set 0.581781
## Test set NA
print(forecast::accuracy(glmnet_forecast, AirPassengers[116:144]))
## ME RMSE MAE MPE MAPE MASE
## Training set 2.207596e-15 13.64072 10.86278 -0.7182150 5.219268 0.5598804
## Test set 1.701171e+00 34.42065 28.69509 -0.4970236 6.460795 1.3624492
## ACF1
## Training set 0.616725
## Test set NA
airpass <- cbind(arima_forecast$mean,
ets_forecast$mean, theta_forecast$mean,
ridge_forecast$mean, glmnet_forecast$mean,
ts(AirPassengers[116:144],
start=start(arima_forecast$mean),
frequency=frequency(AirPassengers)))
colnames(airpass) <- c("ARIMA", "ETS", "Theta", "Ridge", "GLMNET", "Actual")
(forecasting_methods <- colnames(airpass)[1:5])
## [1] "ARIMA" "ETS" "Theta" "Ridge" "GLMNET"
train_obs <- airpass[1:21, 6]
train_pred <- airpass[1:21, 1:5]
test_obs <- airpass[22:29, 6]
test_pred <- airpass[22:29, 1:5]
data <- ForecastComb::foreccomb(train_obs, train_pred, test_obs, test_pred)
## elapsed
## 0.012
## ME RMSE MAE MPE MAPE Custom Error
## Test set 18.10097 23.41915 19.62024 3.496798 3.795867 19.62024
## [1] 0.5139769 4.6082642 -4.1413190 -0.1354900 0.3797416
## [1] -18.10097
3 - Comb GLMNET
## Warning: Option grouped=FALSE enforced in cv.glmnet, since < 3 observations per
## fold
## elapsed
## 0.101
## ME RMSE MAE MPE MAPE Custom Error
## Test set -21.08074 28.89815 24.49499 -4.291015 4.945516 24.49499
## [1] "foreccomb_res" "comb_GLMNET"
## [1] -21.08074